
Normalization of databases

Database normalization is a technique of organizing the data in the database. Normalization is a

systematic approach of decomposing tables to eliminate data redundancy and undesirable

characteristics such as insertion, update and delete anomalies. It is a multi-step process that puts data in

to tabular form by removing duplicated data from the relational table.

Normalization is used mainly for 2 purpose.

- Eliminating redundant data

- Ensuring data dependencies makes sense. ie:- data is stored logically

Problems without normalization

Without normalization, it becomes difficult to handle and update the database, without facing data loss.

Insertion, update and delete anomalies are very frequent is databases are not normalized.

Example :-

S_Id S_Name S_Address Subjects_opted

401 Adam Colombo-4 Bio

402 Alex Kandy Maths

403 Steuart Ja-Ela Maths

404 Adam Colombo-4 Chemistry

Updation Anomaly – To update the address of a student who occurs twice or more than twice in a table,

we will have to update S_Address column in all the rows, else data will be inconsistent.

Insertion Anomaly – Suppose we have a student (S_Id), name and address of a student but if student

has not opted for any subjects yet then we have to insert null, which leads to an insertion anomaly.

Deletion Anomaly – If (S_id) 401 has opted for one subject only and temporarily he drops it, when we

delete that row, entire student record will get deleted.

Normalisation Rules

1st Normal Form – No two rows of data must contain repeating group of information. Ie. Each set of

column must have a unique value, such that multiple columns cannot be used to fetch the same row.

Each row should have a primary key that distinguishes it uniquely.

Primary Key – The primary key is usually a single column, but sometimes more than one column can be

combined to create a single primary key.

Example – Student Table (Before 1st Normal form)

Student Age Subject

Adam 20 Bio, Maths

Alex 21 Maths

Steuart 19 Maths

In 1st normal form, any row must not have a column in which more than one value is saved. However in

1st normal form, data redundancy will increase as there will be many columns with the same data in

multiple rows, but each row as a whole will be unique.

Student Table (After 1st Normal form)

Student Age Subject

Adam 20 Bio

Adam 20 Maths

Alex 21 Maths

Steuart 19 Maths

2nd normal form

In the 2nd normal form there should not be any partial dependency of any columns on primary key. A

table that has concatenated primary key, each column in the table that is not part of the primary key

must depend upon the entire concatenated key for its existence.

Student Table (Before 2nd Normal form)

Student Age Subject

Adam 20 Bio

Adam 20 Maths

Alex 21 Maths

Steuart 19 Maths

Student Table (After 2nd Normal form)

Student Age

Adam 20

Alex 21

Steuart 19

Student Subject

Adam Bio

Adam Maths

Alex Maths

Steuart Maths

While the candidate key is (Student, Subject), Age of student only depends on Student column.

3rd normal form

Every non-prime attribute of table must be dependent on primary key. The transitive functional

dependency must be removed from the table.

Example – Student_Detail table (before 3rd normal form)

Student_Id Student_Name DOB Street City State Zip

In this table Student_Id is the primary key, but street, city and State depends on Zip. The dependency

between Zip and other fields is called transitive dependency. Hence, to apply 3rd normal form, we need

to remove Street, City and State to a new table with Zip as a primary key.

Student_Detail table (after 3rd normal form)

Student_Id Student_Name DOB

Address table

Zip Street City State

The advantage of removing transitive dependency is as follows.

- Amount of data duplication is removed

- Data integrity achieved

Entity Relationship Diagram

An entity diagram is a visual representation of how data is related to each other.

Entity – An entity is a person, place or object which is represented as rectangles.

Attribute – Attributes are properties of an entity. Each attribute will have a type

Eg:-Student_Name : VARCHAR (50)

Student_DOB : DATETIME

Teacher_Qualification : VARCHAR (100)

Student_Age :NUMERIC

Relationship

There are 4 types of relationships that could exist between entities. Many to many relationships should

be resolved using an intermediate entity.

- One-to-one (Eg:-Husband and Wife)

- One-to-many (Eg:-Student and Student_Detail)

- Many-to-one

- Many-to-many (Eg:-Student and Address)
Student Student_

Detail

1..* 1

Structured Query Language (SQL)

SQL is a programming language used for storing and managing data in RDBMS. All RDBMS (SQL Server,

Oracle, MySQL, MS Access) use SQL as the standard database language. SQL is used to perform all types

of operations in a database. The following SQL commands are usually used.

Data Definition Language (DDL)

All DDL commands are auto committed.

Command Description

CREATE To create new table or database

ALTER For alteration

TRUNCATE Delete data from table

DROP Drop a table

RENAME To rename a table

Data Manipulation Language (DML)

DML commands are not auto committed. They can be rolled back.

Command Description

INSERT To create new table or database

UPDATE For alteration

DELETE Delete data from table

MERGE Drop a table

Data Query Language (DQL)

Command Description

SELECT Retrieve records from one or more tables

Data Control Language (DCL)

Command Description

GRANT Grant permission of right

REVOKE Take back permission

Transactional Control Language (TCL)

Command Description

COMMIT To permanently save

ROLLBACK To undo change

SAVEPOINT To save temporarily

CREATE statement

CREATE DATABASE Tuition;

CREATE TABLE Student (Student_IdVARCHAR(10), Student_Name VARCHAR(50), DOB DATETIME);

ALTER statement

ALTER TABLE Student add (Address VARCHAR(100));

ALTER TABLE Student add (Address VARCHAR(100), default 'Colombo-5');

ALTER TABLE Student rename Address to Location;

ALTER TABLE Student drop Location;

DROP statement

DROP TABLE Student

DROP DATABASE Tuition

RENAME statement

Rename TABLE Student to Student_Record

INSERT statement

INSERT into Student values ('100', 'Silva', '1-JAN-1990')

UPDATE statement

UPDATE Student set Student_Name='Kumar' where Student_Id='100'

DELETE statement

DELETE from Student where Student_Id='100'

GRANT and REVOKE statement

GRANT create table to UserName

REVOKE create table from UserName

SQL queries

SELECT *

FROM Student

WHERE Student_NameLIKE 'a%'

ORDER BY asc

GROUP BY Student_AGE

HAVING Student_AGE>20

SQL Functions

1. AVG

SELECT AVG(Student_Marks) FROM Marks

2. COUNT

SELECT COUNT(Student_Name) FROM Student

3. DISTINCT

SELECT COUNT(DISTINCT Salary) FROM Employee

4. FIRST

SELECT FIRST(Student_Name) FROM Student ORDERBY Age

5. LAST

SELECT LAST(Student_Name) FROM Student ORDERBY Age

6. MAX

SELECT MAX(Student_Marks) FROM Marks

7. MIN

SELECT MIN(Student_Marks) FROM Marks

8. SUM

SELECT SUM(Salary) FROM Employee

9. ROUND

SELECT ROUND(Salary) FROM Employee

10. MID

SELECT MID(Employee_Name, 1, 10) FROM Employee

11. LCASE

SELECT LCASE(Employee_Name)

12. UCASE

SELECT UCASE(Employee_Name)

AND and OR Operators

AND

SELECT * FROM Employee WHERE Employee_Salary>25,000 AND Employee_Age<25

OR

SELECT * FROM Employee WHERE Employee_Salary>25,000 OR Employee_Sage<25

Database Keys

1. Primary Key

Primary Key helps to uniquely identify a row. Primary key could either be a single attribute or a

group of attributes (composite keys)

Eg1-Student_ID for Student table.

Eg2-Student_ID and Subject_ID for Marks table

2. Foreign Key

A key which is primary key when referred in another table is made as a foreign key. Foreign Key

is used to relate 2 tables.

Eg:-Emp_Id is a foreign key for Emp_Salary table

UNION and INTERSECT

UNION

SELECT * FROM A UNION ALL SELECT * FROM B will obtain all records from both tables, excluding

common records.

UNION ALL

SELECT * FROM A UNION ALL SELECT * FROM B will obtain all records from both tables, including

common records.

INTERSECT

SELECT * FROM A UNION ALL SELECT * FROM B will obtain all records from both tables, which are

common records.

MINUS

SELECT * FROM A MINUS SELECT * FROM B will remove all common records in both tables as well

unique records in table B

Alias

Alias will rename the query results as something different from the table name.

SELECT Emp_Name FROM Employee AS NAME

